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Abstract: - This paper analyses Fourier transform used for spectral analysis of periodical signals and 
emphasizes some of its properties. It is demonstrated that the spectrum is strongly depended of signal duration 

that is very important for very short signals which have a very rich spectrum, even for totally harmonic signals. 
Surprisingly is taken the conclusion that spectral function of harmonic signals with infinite duration is 

identically with Dirac function and more of this no matter of duration, it respects Heisenberg fourth uncertainty 
equation.  In comparison with Fourier series, the spectrum which is emphasized by Fourier transform doesn’t 
have maximum amplitudes for signals frequencies but only if the signal lasting a lot of time, in the other 

situations these maximum values are strongly  de-phased while the signal time decreasing. That is why one can 
consider that Fourier series is useful especially for interpolation of non-harmonic periodical functions using 

harmonic functions and less for spectral analysis. 
 

 

Key-Words: - signals, Fourier transform, continuous spectrum properties, Quantum Physics, Fourier series, 
discrete spectrum 

 

1 Introduction 
A signal is considered and interpreted as a variable 

that defines a time dependant physical phenomenon. 
As a generalized form, the signal is analytically 

defined, as a real function ( )tf , with a single real 

variable that is t (=time). For this paper there were 
only selected several categories.  

The best known and also the most commonly used 
periodical signals will be shortly presented below: 

The signal ( ) ( ) ( )ϕ+ω= ttAtf 0sin  is a harmonic 

signal, where ( )tA  is the amplitude, 0ω  is own 

pulsation, ϕ  is initial phase; the signal is stationary 

for ( ) consttA = and non-stationary for ( ) consttA ≠ . 

If ( ) atCetA −= , then the signal is called dampened 

signal, where a is the dampening factor[4]. 
The stationary non-harmonic signal can be found 
under many shapes, the most common of them 

being the “saw tooth” signal, originating from 

( ) ( )0kTtatf −= , the rectangular signal, 

originating from 

( ) [ )
[ )




+µ+∈
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=
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000
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,,

TkTTkTt

TkTkTta
tf , the “impulse 

train” signal that originates from 

( )




≠

=
=

0

0

,0

,

kTt

kTta
tf  where 0T  is the own period 

00 2 ωπ=T , ( )0/int Ttk = , int is the ”whole part 

of...” function, µ is a subunit and positive coefficient 

which characterizes the so-called filling factor of the 

signal, for µ=0,5  the signal has level a during the 
first half of the period and level 0 for the other 

second half. 
 If the amplitude (the maximum value of 

( )tf  signal on a T period) is constant in time, it 

means that the signals are stationary, if the 
amplitude is variable in time, the signals are known 

as non-stationary.  
Time t is only considered for positive values, 

0≥t .  

When talking about deterministic and non-

periodical signals (signals that follow a known and 
reproducible rule and contain no repetitive 
sequences within their entire duration), we refer to 

three categories of signals that are by now classics:  

- step signal ( )




<

≥
=

0,0

0,

t

ta
tf ,  

- ramp signal ( )




<

≥
=

0,0

0,

t

tat
tf  and  

- impulse signal (or Dirac function), which could 

also be written as ( )tδ  and be defined in many ways 

for different technical needs.  
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We will use the simplest definition of the 
Dirac function, characterized by two simultaneous 

valid conditions ( )




≠

=∞+
=δ

at

at
t

,0
, ( ) 1=∫ δ

+∞

∞−
dtt . 

Besides the above signals there are infinitely more 
non periodical signals that can be artificially 

produced or that may be received from the 
environment, such as the sound signal from a 

concert, where the signal rule is provided by the 
musical score and each instrument’s specific 
resonance.  

Random signals are those signals that cannot 
be described by a rule. That is why random signals 

cannot be considered determinist signals because 
there is no connection between cause (the rule) and 
effect (the signal) through within reproducible 

conditions. Such examples can be the evolution of 
the car’s engine RPM during its running life, daily 

air temperature variation at a certain location and so 
on. Theoretically, some artificially produced 

functions can be interpolated with such random 

signals, given specific time limits [ ]21, ttt ∈  and the 

acceptance of a certain amount of inaccuracy, thus 

obtaining a deterministic signal. While this is the 
general approach for interpreting real life signals by 
deterministic signals, there are two issues that must 

be solved during this process:  
-find the best adequate interpolation 

functions  
-eliminate the errors and interference during 

the signal’s acquisition.  
All the signals described above are considered 

to be continuous signals, although mathematically 

speaking some of them, such as the saw tooth, 
rectangular or impulse signals offer obvious 

discontinuities. In spite of this, mathematical 
operations of integration, derivation and operational 
computation are done by ignoring the inherent 

inaccuracy. For some applications, such as Fourier 
series coefficients determination, only Dirichlet 

conditions are enough (the function which describes 
the signal is bound, has a finite number of 
discontinuities and finite extremes during it’s 

period), conditions which are not fulfilled only by 
the impulse signal. 

Mathematics creates the possibility that every 

stationary periodical non-harmonic signal with 0ω  

pulsation to be interpolated with an infinite series of 

stationary harmonic functions whose pulsation is 
multiple of the signal pulsation 

∞=ω=ω ⋯3,2,1,0 nn . Based on this 

mathematical artifice, we are talking about Fourier 
series, one can explain the fact that any periodical 

non-harmonic signal has within sources able to 
stimulate a wide range of physical systems with own 

frequency equals any signal components 

∞=ω ⋯3,2,1,0 nn  although not necessarily with 

equal signal pulsations 0ω . Also from Fourier series 

theory results that a pure harmonic signal doesn’t 

contain signals with superior pulsations 0ωn . 

Due to this Fourier series exclusive 

interpretation applied to periodical signals, which 
shows that a stationary harmonic signal with a 

single pulsation 0ω  cannot contain components of 

other pulsations but its own pulsation 0ω , there is 

the opinion that stationary harmonic signals cannot 

stimulate physical systems which have own 

pulsations different from 0ω . The authors’ research 

demonstrated that this theory is not true[3,5]. More 
than this, signals considered identical, that is with 
identical amplitudes, phases and pulsations, are not 

identical from spectral point of view if the signals 
have different durations and this can be noticed in 

many practical situations. 

 

 

2 Fourier Series and Their Properties 
A stationary periodical signal ( )tg  with period 

0

0

2

ω
π⋅

=T , where 0ω  is the signal pulsation, which 

fulfils the Dirichlet conditions, can be represented 
by a mathematical series whose terms are harmonic 

functions with pulsations multiple of the 0ω  

pulsation. The 0ω  pulsation is called fundamental 

pulsation and the harmonic function with the 

pulsation equal to 0ω  is called fundamental 

harmonic. Harmonic functions with pulsations 

⋯,3,2,0 =ω⋅ nn  are called n order harmonics. 

The general form for series of harmonic functions 

is: 

( ) ( ) ( )[ ]∑ ⋅ω⋅⋅+⋅ω⋅⋅=
∞

=0
00 sincos

n
nn tnbtnatf       (1) 

where the series has an infinite number of 
members. 

To actually identify the series means to know 

the nn ba ,  coefficients. In order to do that one needs 

put the condition that the series of harmonic 

functions (1) should have, within the continue 
domain of period T, the smallest square average 

deviations from the ( )tg  function, respectively to 

satisfy the expression (2) for S = min, where :  
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( ) ( ) ( )[ ]
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2

0

00 sincos ωω
 

(2) 

and so (3) has the minimum value: 

Any integration limits can be chosen, under 

the condition to determine a time domain that 

includes an entire period of the ( )tg  signal. The 

limits may be symmetrical, such as ∫
−

2

2

0

0

T

T

, limits with 

asymmetrical form such as (2) and (3) or any other 
type of limits. One may use, especially in (3), a 

calculation domain as multiple of period 0T , but this 

doesn’t necessarily bring more precision in the 

nn ba ,  coefficients determination.  

To find out the na  and nb  coefficients from 

(1) one needs to write the condition (3) under it’s 
known form: 










=
∂
∂

=
∂
∂

0

0

n

n

b

s

a

s

                                                                (4) (4) 

By solving the equations system (4), one gets the 
expressions: 
 

( )

( ) ( ) ( ) ( )∫∫

∫

⋅==

=⋅=

00

0

0

0

0

0

0

0

0

sin
2

;cos
2

)5...(;.........0;
1

T

n

T

n

T

dttntg
T

bdttntg
T

a

bdttg
T

a

ωω

 

where n= 1,2,... 

(5) 

Also in (5), there is no restriction in choosing 

the integration limits as long as one includes a 
complete period. Thus expression (1) has the form: 

( ) ( ) ( )[ ]∑
∞

=

⋅ω⋅⋅+⋅ω⋅⋅+=
1

000 sincos
n

nn tnbtnaatf (6) (6) 

so that the constant 0a , which is a measure of signal 

( )tg  asymmetry in respect with the abscissa, is 

naturally separated from functions which represent 

harmonics of n order. 
Decomposing a stationary signal 

( ) ( )tAtg ⋅ω⋅= 0sin  in Fourier series, respectively 

calculating nn ba ,  coefficients, results in values 

00 =a , ;2,1,0 ⋯== nan  ⋯,3,2,0;1 === nbAb n  

in other words, it results in the initial signal. That is 
where the opinion that a stationary harmonic signal 

has a single harmonic component, respectively 
itself, is coming from. This opinion will be 
invalidated in the following paragraphs.  

The harmonic components were written as 
in (6), where each component is written like a two 

trigonometric functions sum, for reasons 

regarding nn ba ,  coefficients calculation. 

Grouping the two components of n order harmonic 

in this way, one obtains: 

( ) ( )∑
∞

ϕ+⋅ω⋅⋅+=
1

00 sin nn tnAatf                        (7) 

where the amplitude nA  and phase nϕ  result from 

the coefficients identification: 

( ) ( ) ( )
( ) ( ) ( ) ( )tnbtnatnA

tnAtnA

nnnn

nnnn

000

00

sincoscossin

sincossin

ωωωϕ

ωϕϕω

+=+

+⋅⋅⋅⋅=+⋅⋅⋅
(8) 

we can thus identify the coefficients as: 

( )
( )




ϕ⋅=

ϕ⋅=

nnn

nnn

Ab

Aa

cos

sin
                                                  (9) 

and we then get: 









=ϕ

+=

n

n
n

nnn

b

a
arctg

baA 22

                                                    (10) 

By using the (7) formula, with coefficients 

calculated according to relation (10), one finds that 
a specific order n harmonic is a stationary sinusoidal 

signal with it’s own amplitude and phase. In 
expressions (7) and (10) one notices that a certain 

harmonic of order n is actually a signal produced by 

a rotating vector nv
�

 (complex number), having 

modulus nA  and phase nϕ . 

( )ntnj
nn eAv

ϕ+ω⋅⋅= 0
�

                                               (11) 

Where components nb  are on the real axis and na  

are on the imaginary axis. 
To determinate the harmonics of a periodic signal is 

not only a theoretical problem which allows 
decomposing a periodic function into other periodic 

functions. Harmonics existence are strongly felt in 
practice because a non harmonic periodic signal 
generates an infinite number of excitation sources 

having frequencies equal to multiples of the basic 
signal frequency and these sources produce obvious 

effects by stimulating physical systems with 
pulsations (frequencies) equal to any multiple of the 
signal’s own pulsation (frequency)[5].  

Frequency multipliers used in radio-technics 
are based solely on this obviously very real 

phenomenon. For multiplication, a stationary 

( ) ( ) ( )[ ] dttnbtnatg

T

n

nn∫ ∑








+−
∞

=

0

0

2

0

00 sincos ωω (3)  
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harmonic signal is distorted to generate harmonic 

components with pulsations 0ωn  from which is 

extracted, through filtration, the component with the 

value n that is desired, usually 52⋯=n .  

This phenomenon appears also is also found 
when referring to mechanical systems, respectively 
a non-harmonic signal generates sources of 

excitation which get in resonance with components 
of the system. A good example is given by non-

harmonic signals such as earthquakes which 
produce damages to constructions or parts of 
constructions that have their own pulsation equal to 

harmonics of the earthquake.  
From (7) one determines that a non-harmonic 

periodic signal is the better defined in Fourier series, 
the more components of the series are identified, 
respectively the higher n gets. In reality there is a 

limitation here: calculating the coefficients of the 
Fourier series, and even in the series itself, there are 

used the harmonic functions ( ) ( )tntn 00 cos,sin ωω  

and it is well known that functions ( )∞sin , ( )∞cos  

are indeterminate.  

By using a computer to calculate the series 
elements the non determination situation described 

above is rapidly reached due to the way in which 
numbers are represented by the operating system or 
programming language, since numbers are only 

represented with a finite number of figures. The 
below examples clearly show this fact.  

 
Fig. 1 - Tooth of the saw signal 

In fig. 1- a saw tooth signal which is 

analytically defined in the above, having period 

10 =T  second and a=1, fig. 1. In fig. 2, in the upper 

side we show the shape of the first eight harmonics 
and in lower side the initial signal, reconstructed 
from ten harmonics.  

 
Fig. 2 - Reconstruction of ten harmonics 

The value of the constant component ao is 0,99401  

and the amplitude of the tenth order harmonic 10A  is 

0,01593. 

By increasing the number of harmonics one 
would expect the signal reconstruction to be more 
accurate, maybe with the exception of interval 

limits, where the mathematical discontinuity is also 
more pronounced. By increasing the number of 

harmonics, like in fig. 3 and 4, one notices a 
contradictory situation: reconstruction out of 300 
harmonics is more precise than of 500, where large 

errors appear.  

 
a0=0,99401; A300=0,00105 

Fig.3 Reconstruction out of  300 armonics 

 
Fig. 4 - Reconstruction out of 500 armonics 

 
To find the source of this deviation one has to 

research the evolution of the harmonic’s amplitude 
in the studied cases, fig. 5.  

 
Fig. 5 - The amplitude of first 600 harmonics 

If for a number up to 300-400 harmonics 

their amplitude continually decreases in the same 
time with the increase of the given harmonic’s 

number of order, by continuing to increase the 
number of harmonics, their amplitude begins to 

increase again up to the value =500A 0,497. 
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Continuing to increase the number of harmonics, 
their amplitude decreases again followed once more 

by an increase for higher values of order’s number. 
This variation of the amplitude by the increase of 
the number of order, is not due to the structure of 

known relations of calculation but actually to the 
computer having to operate with hard conditioned 

relations. The cause of the deviations from figure 4, 
where the signal is reconstructed out of 500 

harmonics, can be thus found in the particular way 
in which the digital computers operate with numbers 
which have a finite number of figures and, due to 

the truncation errors that appear when a large 
number of computations is being done, one may end 

up experiencing big errors.  
 

 
Fig. 6 – Distorted harmonic signal 

 
Let’s now analyze the signal from figure 6, 

which represents a harmonic signal of pulsation 
1

0 10 −=ω s , and described by the equation 

( ) ( )ttg 0sin ω= , and is distorted through “cutting” in 

positive values domain between the angles of 

π=ω 2.00t  for 
0

2.0 ωπ=t  and π=ω 8.00 t  

for
0

8.0 ωπ=t . The signal is only known during a 

period of time [ ]π∈ω 200 ⋯t  for [ ]020 ωπ∈ ⋯t . 

The first 10 harmonics have the amplitudes 

described in table 2, where one can see that their 
values don’t decrease continuously, but have a non-

monotonous variation, their values being correctly 
evaluated because the evaluation of 

( ) ( )tntn 00 cos,sin ωω  was done for reasonably large 

values of the arguments.  
For experimentally acquired signals, the 

upper limitation of the harmonics is resulting from 
considerations related to the signal sampling theory. 
Thus, should the signal be acquired at equally 

divided t∆  time intervals, the maximum pulsation 

for which one can identify harmonic components of 
the Fourier series is given by:  

t∆
π

=ωmax                                                             (12) (12) 

 

Table 1 
The amplitude of the first 10 harmonics 

n 1 2 3 4 5 6 7 8 9 10 

ω 10 20 30 40 50 60 70 80 90 100 

A
m

p
l.

 

0
,8

5
1
 

0
,1

1
2
 

0
,0

6
6
 

0
,0

2
4
 

0
,0

0
3
 

0
,0

1
3
 

0
,0

0
9
 

0
,0

0
1
 

0
,0

0
4
 

0
,0

0
5
 

Subsequently one can say about Fourier series 
that: 

- It is a series made of harmonic functions with 
pulsations equal with multiples of the pulsation of 
the non-harmonic periodic signal from which it 

originates;  
- The harmonic functions which compose the 

Fourier series are real sources of excitation for 
physical systems which have own pulsations equal 

with one of the harmonic pulsation;  
- Each harmonic’s amplitude has a finite value, 
usually considered as continuously decreasing by 

the order of the harmonic, although there may occur 
situations where the decrease is not continued;  

-The harmonic functions come together in a discrete 
spectrum of pulsations contained in the base signal;  
-The characteristics of each spectrum’s harmonic, 

meaning amplitude and phase, are independent from 
the signal duration;  

- The Fourier series doesn’t show if, among the 
discrete harmonic components, it has others able to 
excite various other oscillating systems.  

 

3 About Fourier Transform 
Non-harmonic periodical signals analytically 

described by a function which respects Dirichlet’s 
conditions (the function which describes the signal 

is limited, has a finite number of discontinuities and 
finite extremes on the period’s duration) are 
empirically known as numerical function and can be 

interpolated through an infinite series of harmonic 
functions, respectively Fourier series. If Fourier 

series is applied for periodical signals only, Fourier 
transform can be applied as well for periodical and 
non periodical signals which are considered as an 

extreme case of periodical signals. If the Fourier 
series identifies only discrete spectral components 

with pulsations equal with multiple of the pulsations 
of the periodical and non harmonic signal, the 

Fourier transform shows spectral components on the 
continuous domain of pulsations of a periodical or 
non periodical signal [1], [2], [3], [4]. Fourier 

transform makes that from a real function of time, 
which describes researched signal, to get a complex 

function having the pulsation as variable. This 
modulus of complex function is named either 
frequency characteristic if refers to attenuation 
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properties of a medium whereby are transferred 
signals or spectral function if refers to spectral 

composition of a known signal [5].   The Fourier 
transform theory can be applied with the same 
results to any kind of signals [6] of very different 

technical field (electrical signals [7], radio electrical 
signals [8], [9], mechanical signals. Among Fourier 

transform results, the most surprising approaches to 
the Quantum Physics, mostly considered abstractly 

even for physicians. 
Although Fourier transform theory is well known, 
this must to be shortly sum up for emphasize some 

useful rules. 

A periodical signal ( )f t  of period
0

T , and pulsation 

0 02 Tω π= , can be spectrally analyzed with the 

form: 

 

( ) ( ) j tF j f t e dtωω
+∞

−

−∞

= ∫  (13) 

 
called, by definition, Fourier transform of function 

f ( t )  and is symbolically written:  

 

( ) ( )F j F f tω  =    (14) 

 
The expressions of Fourier transforms were inferred 

for the case of non periodical signal. They are 
perfectly valid also for periodical signals, because  

can be ignored or considered as a no essential 
feature that the periodical signals values are 

regularly repeated at moments equal with one 
period. 
Because of the form of expression (15) appears the 

necessity of knowing the real signal, depending of 
time, on an infinite domain, between plus and minus 

infinite. For a concrete signal, known between the 

finite moments 
1

t  and
2

t , can be used the below 

argument: 

 

( ) ( )

( ) ( )

( ) ( )

1 2

1 2

2

1

1

1 2

t t
j t

2
t t

t
j t

t

0, t t
f t

f t , t t t

F j 0dt f t e dt 0dt;0, t t

so :

F j f t e dt

ω

ω

ω

ω

+∞
−

−∞

−

<
= 

≤ ≤ ⇒

= + + >∫ ∫ ∫

= ∫

 (15) 

 
The transformations (13) and (15) make that a real 

function of real variable ( )f t , to become a complex 

function ( )F jω    with real and imaginary parts 

Re  and Im . Using the writing ways of complex 

functions it gets:  

 

( ) ( ) ( )

( ) ( ) ( )

2

1

2

1

t

t

t

t

Re F j f t cos t dt;

Im F j f t sin t dt

ω ω

ω ω

  = −∫ 

  = −∫ 

 
(16)

The expression (16) allows finding the modulus 

(amplitude) S called hereinafter spectral function 

and phase φ  of complex function as real functions 

of pulsation: 

 

( ) ( ){ } ( ){ }

( )
( )
( )

2 2

S Re F j Im F j

Im F j
arctan

Re F j

ω ω ω

ω
φ ω

ω

   = +   

  =
  

 (17) 

The definition domain of pulsation from the spectral 

function ( )S ω  is comprised between zero (negative 

pulsations don’t make sense) and a maximum value 

maxω  which, for signals described by analytical 

functions, can be chosen of however high value 

depending on certain concrete criterion. For signals 
empirically taken as samples with constant period of 

time t∆ , the value of maxω  is given by Shannon's 

sample theory, respectively:  
 

max
t

π
ω

∆
=  (18) 

 
We chose for the following analyze a pure harmonic 

signal which can exist alone or can appertain to a 
composite periodical signal:  

 

( ) ( )of t sin tω=  (19) 

 

which is quite known for [ ]o
t 0,2π ω∈ . For the 

spectrum which is determined with Fourier 

transform using (15) and (17), the integration will 
be performed on variable durations between the 

limits  1t 0=  and 2 ot 2nπ ω=  (n is a multiply of 

period 0 0T 2π ω= ) to have in view any influence of 

signal’s duration, duration which doesn’t appear at 
the Fourier series. After analytical calculating 

performing the expression for spectral function is 
getting:  
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( ) o

0 2 2

o

sin n

S 2

ω
π

ω
ω ω

ω ω

 
 
 =

−
 (20) 

 

4 Spectral Function Properties 
The Fourier series gives for the signal (19) only a 
single spectral component, namely itself. The 

Fourier transform and the spectral function gives a 
large spectrum dependent of the signal duration n 
and presented in the figure 1 for n=4.     

Analyzing the expression (20) is noticed some 
interesting issues: 

- In point of abscise 0ω ω= , the amplitude has the 

value [11]:  
 

( ) ( )
o

o

0 0 2 2

o o

sin n
S 2 nlim

ω ω

π ω ω π
ω ω

ω ω ω→
= =

−
 (21) 

 
 
- The peak of frequency characteristic, respectively 

the maximum amplitude, appears for 0ω ω=  only if 

n → ∞ . 

- The S amplitude in co-ordinate point 
0

ω ω=  is 

growing in the same time with signal’s duration, so 

that for n → ∞ , S → ∞ .  

- The signal (fig 7) contains an infinite number of 
pulsations existing within a 2d width loop around 

0ω ω=  and a series of d width loops one side and 

another of the 0ω ω= .  

- The loop centered on the value 0ω ω=  has the 

biggest amplitude, the other loops amplitude being 

smaller the farer they are of 0ω ω= ; the loops width 

decreases as signal duration increases.  

 

 
Fig. 7 Continuous spectrum of pure harmonic signal 
 

 
 

Fig. 8 Spectrum of signal with different duration 
 

From those above a very interesting feature could be 

emphasized, figure 8 ( 1

0 10 sω −= ): as the pure 

harmonic signal is shorter, its spectrum is larger and 

the spectrum contains a very broad loop centered in 

0ω ω=  called central loop and a series of loops with 

smaller and smaller amplitudes for pulsations farer 

and farer of 0ω ω= ;  as the signal duration increases 

the central loop width decreases and its amplitude 

increases and lateral loops became narrower and 

thicker, tending to get closer to the pulsation  

0ω ω= . 

If the signal is periodical but non-harmonic, than it 

contains a number of harmonic components which 

produces, each of them, a spectrum as is shown 

above, and each component’s spectrum is cumulated 

into a global effect.  

So it is explained why, in practice, an earthquake 

which takes for few ground oscillations causes 

walls, chimneys, pillars or many other construction 

elements collapsing with very different own 

pulsations. 
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Fig. 9 Experimentally confirmation of the broad-

band spectrum of the short signals 
 

Even that a signal has a very long duration, its 

harmonics effect will have major variations while 

the signal proceeds over the object which is under 

its influence. In the beginning of respective signal’s 

action, even after its first period will appear a lot of 

harmonics on a wide pulsations band, capable to 

stimulate a lot of oscillating systems with a wide 

variety of own frequencies and while the signal time 

of action is growing  the harmonics tend to signal’s 

own pulsation. In this way, the most dangerous time 

duration regarding the signal action is in its first 

periods, when the possibility to perturb is acting on 

the most wide spectrum possible.   

Figure 9 shows a very simple device which 

emphasize all above. On a holder 1 are fixed two 

identically frames 2 and 3. On the frame 2 is 

suspended a plate 4 using two equal wires of length 

l and on the frame 3 are suspended a lot of plates 5 

(we used 10) using wires of different lengths. il , 

1 5 10l l , l l , l l> = < .  So, the plates are forming 

some pendulums with different own pulsations, 

i ig lω = , g=9.81 2ms − .  For a ratio 1 10l l 2=  the 

extreme pendulums will have pulsations in 

ratio1: 2 , resulting that 1 5 5 10l l l l 2= = . The 

other pendulums length il  will vary as a square root 

function to oscillate on pulsations with equidistant 

values between 1ω  and 10ω .  

If plate 4 is moved under the direction M, it will 

oscillate with its own pulsation and will stimulate 

through pressure waves the pendulums 5. Will be 

noticed very easy that at first oscillation of plate 4 

will be stimulated and will oscillate all pendulums 5 

and then, when oscillations number of plate 4 is 

rising in time only pendulums 5 with length equals 

with plate 4 will continue to oscillate.      

This mechanical device was chosen to emphasize 

the influence of signal duration upon the spectrum 

because it produces slow oscillations, easy to notice 

and to study. Can be made more other devices, also 

electronic devices but these are more complicated 

and hard to be analyzed. 

 

5 Fourier Transform and Quantum 

Physics 
In Quantum Physics exists Heisenberg's fourth 
equation of uncertainty [12], written like in 

following equation: 
 

W hδ δτ⋅ ≥  (22) 

 

Where Wδ is a wave energy variation, δ τ  is wave 

duration, h is Plank constant. If (22) is divided by h 

and taking into account that wave s energy 

isW hν= , ν =frequency, is getting:  

 
1δν δτ⋅ ≥  (23) 

 
or  

 

2δω δτ π⋅ ≥  (24) 

 

This means that a signal spectrum has a pulsation  

variation range δω  inversely proportional to its 

 duration δτ :  

 

2

t

π
δω

δ
≥  (25) 

 
its spectrum being as broader and larger as it is 

shorter in time. This conclusion shows a first 
connection between Fourier transform and Quantum 

Physics.  
To show another connection we have to weigh 
anchor the spectral function determination starting 

from the same pure harmonic signal (fig. 7) but 
integrated between negative and positive limits 

expressed as multiples of own period 
0 0

T 2π ω= , to 

simplify the calculations:   
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 

 − +
 − − =

− + 
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(26) 

 

The calculations are simplified if  1 2n n n= =  for 

 which ( )( )Re F j 0ω = , and spectral function 

 becomes:  

( ) ( )0

0 2 2

0

sin 2 n /
S 2

π ω ω
ω ω

ω ω
=

−
 (27) 

 

In co-ordinate 0ω ω= , (15) becomes:  

 

( )0

0

2 An
S

π
ω

ω
=  (28) 

 
The spectral function is annulled in following 

 co-ordinates:  
  

0

k
, k 0,1,2,3, , k 2n

2n
ω ω= = ≠⋯  (29) 

 
A typical graph of spectral function for n=2 could 

be seen in figure 10 and it looks like graph form 
figure 1, the difference is that n represents the pairs 

number of periods the signal lasts.  
The calculation of the each loop surface of this 
function, for an infinite signal duration, starts with 

the calculation of main loop surface, between 1ω  

and 2ω , where 1 0 0 2nω ω ω= − , 2 0 0 2nω ω ω= + ). 

 
Fig. 10 Spectral function 

Because ( )
2

1

S d
ω

ω
ω ω∫  is transcendental can not be 

calculate on analytical way, so that it is solved using 
numerical method with data from table 2.  
 

Table 2 
Surface under the central loop as function of n 

n 1 10 100 ... 10000
0 

A
re

a 
 

3
.7

4
4
..
..
 

  
3
.7

0
4
2
..
..
 

 

3
.7

0
3
8
..
..
 

..
. 

3
.7

0
3
8
7
4
1
0
3
7
5
..
..
 

 
It’s noticed a very fast convergence to a 

transcendent number 3.70387410375..., independent 

of 0ω .   

The others loop surfaces, especially surfaces sum is 

very hard to be calculated with an analytical method 
and numerical calculations don’t converge anymore, 

like in prior case. Majorising functions were used to 
solve this problem and also their convergence study 
for n infinite values. Because (27) is a modulus 

function, must find two majorising functions M 1S  

and M 2S :  

 

M 1 0 02 2

0

1
S 2 ,ω ω ω

ω ω
= <

−
 (30) 

 

M 2 0 02 2

0

1
S 2 ,ω ω ω

ω ω
= >

−
 (31) 

 

The value 0ω ω=  is not contained in (30) and (31). 

The single loop surface is:  

 

0

0

k

2n

M 1 0 2 2
k 1

0
2n

2 2

2 2

d
Area S 2

4n 2n k k
ln

4n 2n k k

ω

ω

ω
ω

ω ω−
= =∫

−

+ + −
=

− + −

 (32) 

 

0

0

k
2 22n

M 2 0 2 2 2 2
k 1

0
2n

d k k 2n 4n
Area S 2 ln

k k 2n 4n

ω

ω

ω
ω

ω ω−

+ + −
= =∫

− + − −
 (33) 

 

From (29) results that for (32) k 2n 1< −  and for 

(33) k 2n> . Based on these, the arguments of 
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logarithm function from (32) and (33) are positive 
and bigger than 1 for k and n finite values.  At limit, 

these values became: 
 

M 1
k

M 1
n

M 2
k

M 2
n

lim Area S 0 for any n

lim Area SA 0 for any k

lim Area S 0 for any n

lim Area S 0 for any k

→∞

→∞

→∞

→∞

=

=

=

=

 (34) 

 
No one areas from (32) or (33) could be considered 

negative because the representative functions 
haven’t negative values and taking into account the 
null values from (34) results that non-majorising 

functions values will be null, too. It can be drawn 
the conclusion that for a stationary harmonic signal 

of infinite duration ( n → ∞ ) and unitary amplitude, 

the total area of spectral function is independent of 

signal pulsation 
0

ω  and has a finite value, 

respectively 3.70387410375 ... . For n → ∞ , the 

spectral function central loop in 0ω ω=  is 

narrowing to zero and tend to infinite amplitude. In 
this situation, the spectral function properties 

became:  
 

( )

( )

0

n
0

n 0

for
lim S

0 for

lim S d 3.7038741037

ω ω
ω

ω ω

ω ω

→∞

∞

→∞

 +∞ =
= 

 ≠
 =∫

⋯

 (35) 

 
In Quantum Physics, the Dirac function is 

symbolized with ( )tδ  and could be written like:  

 

( )

( )

0

0

for t t
t

0 for t t

t dt 1

δ

δ
∞

−∞

 +∞ =
= 

 ≠
 =∫

 (36) 

where 0t  is a random value of time. It is noticed that 

the spectral function limit for an infinite duration 

signal has the same properties with Dirac function, 

with the exception of the constant 3.70387410375 

.... instead of the unit. 

 

6 Conclusions 
Fourier transform represents an extension and a 

generalization of Fourier series, as is shown into the 
above demonstrations. If Fourier series can be 
applied only for periodical functions analysis under 

the condition that the period to be already known, 

the Fourier transform can be applied to any 
function, periodical or no periodical, when the 

period is not known. These two applications have in 
common the fact that both of them are providing 
information about spectral components of analyzed 

functions [13], [14], [15], [16]. About information’s 
content, there are fundamental differences between 

these two applications.  The most obvious and 
surprising difference appear in the most simple case 

of pure harmonic signal. If the signal is analyzed 
using Fourier series its spectrum contains only a 
single component or the signal itself. Analyzing the 

signal using Fourier transform one can get a 
spectrum with bands (figure 7) whose width 

depends of signal duration as number n of periods. 
So, the spectrum which Fourier series can get is a 
discreet one, while the Fourier transform provides a 

continue spectrum on many large or narrow bands 
depending of signal duration. Is very important to be 

noticed that for short signals, during only few 
periods, the continue spectrum has not the 

maximum value for its own pulsation 
0

ω  and that is 

why is very difficult to find the value of this 
spectrum frequency (figure 7).  A very important 
case of short signals is represented by earthquake 

signals or some signals produced by industrial 
activities. For a correct evaluation, when one 

processes the measurements of spectrum 
determination or spectrum recording has to take into 
account the above aspects for the precise calculation 

of  spectral components pulsations.   
The facts are more complicated for the non-

harmonic signals. A non-harmonic signal is formed 
very often by the sum of many harmonic signals 

with 
01 02 0n

, ,ω ω ω⋯  pulsations of random values. In 

this case, an analysis using Fourier series will not be 
able to identify each components pulsation mean 

while Fourier transform is able to identify each 

01 02 0n
, ,ω ω ω⋯  harmonics pulsation from spectral 

functions maximum under the condition that for 

each of them to be applied a correction given by 
signal duration.   
An inconvenient of spectral function which results 

from Fourier transform is that for a longer signal the 
maximum value of each components spectrum is 

higher. One can say that the maximum values which 
indicate spectral components will not give the 

correct amplitude values of these components, 
because these values depending a lot of signal 
duration as (20) and (21) show.   

For a spectral analysis of a non-harmonic periodical 
signal using Fourier series, the first difficulty to be 

passed with other methods is to find out the 

fundamental pulsation 
0

ω  of the signal.  The 
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spectral components have the pulsations 

0 0 0
2 , 3 , nω ω ω⋯  indifferently of real structure of 

analyzed signal. That is why the Fourier series is 

especially used for periodical functions 
interpolation, as a mathematical artifice, than for 

spectral components analysis of a signal, as it was 
used.   

Only Fourier transform can provide information 
regarding the spectrum, which compulsory is a 
continue spectrum, in case of non periodical signals.      

Because to solve the expressions (13)-(17) for 
experimental signals is very laborious, it was settled 

a very fast way of Fourier transform, called Fast 
Fourier Transform (FFT).   Recently, normal or fast 
Fourier transform are implemented on different 

software such as LabVIEW [17] or MATLAB [18]. 
But, from the authors experience results that is not 

indicated to use so called brand software because 
could appear no-permitted errors. For example, a 
signal processed in LabVIEW will not emphasize 

the influence of signal time length, so the result 
suggests that the signal could be artificial extended 

to indicate only maximum values of spectral 
components but not the enough wide bands which 
appear with short signals, too. The calculation 

modern technique reaches a work velocity which 
allows to program expressions (13)-(17) without 

spending much time, getting correct results at once 
[19], [20], [21], [22], [23], [24]. As we already 
shown, this aspect is very important in very short 

signal case, but dangerous too, as earthquakes or 
some industrial activities effects.  

If the signal duration is long enough in comparison 
with its own period than the signal’s effect is 

variable in time.  During its first period the signal 
produces the widest possible spectrum and is able to 
excite oscillating systems with a lot of own 

pulsations on a very wide band, figure 2.  As long as 
the signal continues to exist its spectrum is 

narrowed to the signal’s own pulsation. For the 
signals with low pulsation (as mechanical ones) this 
effect is very intensive because its spectrum is 

superposed over many mechanical systems own 
pulsations, especially in constructions field.  

Investigating the properties of spectral function in a 

deeper manner the author found that for a pure 

harmonic signal with an infinite duration, the 

difference between spectral function and Dirac's 

function appears as a constant value which in 

Dirac's function case has the conventional value 1. 

This similitude of the spectral function with an 

abstract and conventional function from Quantum 

Physics is fulfilled by the fact that spectral function 

respects the Heisenberg fourth equation of 

incertitude, valid into all Physics micro-universe. It 

is possible that continuing the investigations to be 

discovered more other surprises which could give 

different meanings to the actual signal investigation 

techniques. 
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